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Gap junctions between excitatory neurons are shown to disrupt the persistent state. The asynchronous state
of the network loses stability via a Hopf bifurcation and then the active state is destroyed via a homoclinic
bifurcation with a stationary state. A partial differential equation �PDE� is developed to analyze the Hopf and
the homoclinic bifurcations. The simplified dynamics are compared to a biophysical model where similar
behavior is observed. In the low noise case, the dynamics of the PDE is shown to be very complicated and
includes possible chaotic behavior. The onset of synchrony is studied by the application of averaging to obtain
a simple criterion for destabilization of the asynchronous persistent state.
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I. INTRODUCTION

Persistent activity in populations of coupled neurons is
believed to underly many neural phenomena both normal
and pathological. For example, persistent activity has been
suggested as a mechanism for working memory �1,2� as well
as underlying epileptic activity in pharmacologically ma-
nipulated tissue �3,4�. The principle theoretical hypothesis
for the mechanism of persistent activity is via recurrent syn-
aptic interactions between excitatory neurons. There has re-
cently been a great deal of experimental and theoretical in-
terest in role of gap junction �electrical� coupling in
synchronizing populations of inhibitory interneurons �5–9�.
Despite the plethora of experimental evidence for electrical
coupling between inhibitory neurons, there are very few in-
stances showing such coupling between excitatory neurons
�10,11�. In this paper, we suggest that the reason for the lack
of gap junctions between excitatory neurons is that such
junctions could disrupt the ability of networks to form per-
sistent activity. Specifically, gap junctions have a tendency to
synchronize neurons and it has been shown that synchrony
often destroys persistent activity �12–17�. Indeed, Netoff and
Schiff �3� show that the termination of ictal seizure events is
presaged by increase in synchrony between neighboring neu-
rons. Hughes et al. �11� have suggested that there may be
some gap junctional coupling between thalamocortical neu-
rons but these neurons are not known to produce persistent
activity. Traub and collaborators have suggested that gap
junctions between axons which spontaneously fire action po-
tentials can serve as background activity to engage inhibitory
oscillatory networks responsible for gamma rhythms �10�.
However, it is not known whether these networks are in-
volved in the kind of persistent activity which underlies
working memory or other phenomena described above.

In this paper, we start with some simulations of a conduc-
tance based model in which we induce a persistent state via
strong recurrent excitatory connections and show how this is
destroyed by gap junctions. Then we turn to a simplified
scalar model which we reduce to a partial differential equa-
tion for the distribution of states �Fokker-Planck equation�.
We discretize the PDE and use continuation to analyze the
mechanism through which gap junctions disrupt the persis-
tent state. We show that there is a Hopf bifurcation corre-

sponding the synchronized spiking of the network. As the
gap junctions increase, the magnitude of the mean field syn-
aptic oscillation increases and becomes homoclinic to a sta-
tionary distribution of the PDE and then disappears destroy-
ing the active state. We return to the conductance based
model and derive a formula for the critical gap junction
strength leading to synchrony. We then use simulations to
show that the full conductance-based model appears to
undergo a similar transition via a homoclinic orbit.

II. CONDUCTANCE-BASED MODEL

The conductance-based model consists of 100 globally
coupled single compartment neurons each having a leak, a
sodium current, and a delayed rectifier current. The model is
based on channel kinetics in Refs. �18–20�. Details of the
channel kinetics are in Appendix A. The network has the
form

C
dVj

dt
= − gL�Vj − EL� − gKnj

4�Vj − EK� − gNamj
3hj�V − ENa�

�1�

− ggap�Vj − V̄� − gsyns̄Vj + ���t� , �2�

dsj

dt
= 2�1 − sj�/�1 + exp�− Vj/4�� − sj/3, �3�

V̄ =
1

N
�

k

Vk,

s̄ =
1

N
�

k

sk,

where the channel variables m ,h ,n satisfy equations of the
form

dx

dt
= ax�V��1 − x� − bx�V�x .

Each neuron has independent white noise added to it with
zero mean and variance �2 /2C2. Typically, �=0.1.
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Equations are integrated using Euler’s method with a step
size of 10 microseconds. We used N=100.

A network of conductance-based neurons with all-all ex-
citatory synaptic coupling and a small amount of noise is
able to support a persistent asynchronous state if the model
cells are sufficiently stimulated. Figure 1 shows an example
of this persistent state. Noise is not necessary but enhances
the asynchronous behavior. This phenomena is well known
and has been studied in both conductance-based models as
well as simplified integrate-and-fire systems. In Fig. 1�A�, at
t=100 ms, the gap junctions are turned on. Over the next
150 ms, the neurons appear to synchronize and once syn-
chrony is reached, the persistent state disappears. Figure
1�B1� shows the total synaptic activity as a function of time,
s̄= �1/N��sj. The persistent state s̄�0.23 shows some small
fluctuations until t=100 when the gap junctions are acti-
vated. s̄ undergoes growing oscillations and at t�220 goes
to zero as the neurons return to rest. Figure 1�B2� shows

the same transition in the �s̄ , V̄� phase plane. Here

V̄= �1/N��Vj. The persistent state is indicated by the white
circle at �0.23, −45�. The persistent state terminates at the
resting potential of the cell, indicated by the gray circle at
�0, −60�.

Our goal in this paper is to understand and explain Fig. 1.
How is it that electrical coupling destroys the persistent
state? On possibility is that electric coupling decreases the
resistance of the cell �acts similar to a shunt� and thus ren-
ders the synaptic excitation less effective. Another possibility
is that the electrical coupling destabilizes the persistent state.
The former mechanism is static while the other requires
looking at the dynamics. We first show that the shunting
hypothesis is incorrect.

Conditions for the persistent state to exist can be found
self-consistently by making the ansatz that the neurons all

fire asynchronously and that there is no noise. This means
that the network average of the synaptic gates, sj and the
voltages, Vj are constant and the same as the time averages
of the individual synapse and potential

s̄ � lim
N→�

1

N
�

j

sj =
1

P
�

0

P

si�t�dt ∀ i ,

V̄ � lim
N→�

1

N
�

j

Vj =
1

P
�

0

P

Vi�t�dt ∀ i .

Here P is the period of the oscillation of a single neuron.
Thus, we need to solve the following differential equation:

C
dV

dt
= − Iion�V,m,h,n� − gsyns̄�V − Esyn� + ggap�V̄ − V� ,

s̄ =
1

P
�

0

P

s�t�dt ,

V̄ =
1

P
�

0

P

V�t�dt

along with the dynamics for s ,m ,h ,n which must be
periodic. Since periodic solutions are translation invariant,
we fix the phase of the oscillation by setting V�0�=0. This
guarantees that the neuron is actually spiking.

It is easy to numerically solve the ODE self-consistently
by treating it as a boundary-value problem �BVP�. �See
Appendix B for the form of the BVP.� Figure 2�A1� shows
the numerical solution for the persistent state as the strength
of electrical coupling increases. There is a turning point or
fold bifurcation at ggap�0.55 and there appear to be two
branches of solutions. One surprising result is that the fre-
quency actually increases for small electric coupling
�as shown in Fig. 2�A2��. Another interesting result is that
the critical gap junctional strength actually decreases with
stronger synaptic excitation �Fig. 2�B�� even though synaptic
coupling is a desynchronizing influence. Clearly the persis-
tent state exists for ggap up to 0.55 when gsyn=0.15. However,
in Fig. 1 we saw that ggap as small as 0.05 was sufficient to
destroy the persistent state. Thus, we conclude that while the
persistent state exists, it appears to lose stability as the gap
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FIG. 1. Persistent activity is disrupted with gap junctions. �A�
Synaptic activity sj�t� for all 100 neurons for 90� t�250 ms. At
t=100, the gap junctional coupling is increased from 0 to 0.05,
synchronizing the network and destroying the persistent state. �B1�
s̄ shows the onset of synchrony with increasing amplitude and

death. �B2� Same as �B1� but plotted in the phase plane showing V̄
as well. White circle is steady state persistent state when there is no
gap junctional coupling.
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FIG. 2. Existence of the persistent state as the gap junctional
coupling increases. �A1� Norm of the solution to the self-consistent
boundary value problem as ggap increases when gsyn=0.15. At
ggap�0.55 the solution with V�0�=0 ceases to exist. �A2� The pe-
riod is a nonmonotonic function of the electrical coupling. �B� Two
parameter diagram showing critical electrical coupling strength as
the synaptic coupling changes.

BARD ERMENTROUT PHYSICAL REVIEW E 74, 031918 �2006�

031918-2



junction strength increases. Shunting is not sufficient to ex-
plain the loss of a stable persistent state.

We conclude this part of the analysis with rough estimate
of the self-consistent value of s̄ when there is no electrical
coupling. Such calculations are routine, for example, Refs.
�1,12,15�. Consider s̄ as a parameter. Then we have to solve
the single cell model for V�t�. Since

s� = ��V��1 − s� − s/�

we want to find the average of ��V�t�� over one cycle, for
then we can solve for the stationary state

0 = 	��V�t��
�1 − s� − s/� �4�

for the average s̄. Our conductance-based model is type I, so
that the onset of rhythmic firing is via a saddle-node bifur-
cation. For synaptic gating variables of type I neurons
	��V�
=K�s̄−a �22�. A numerical evaluation of 	��V�t��
 is
very well approximated by �s̄−0.002902/5.1. Using this ex-
pression in Eq. �4� and using a root finder, we obtain
s̄=0.212 which is very close to the value of 0.225 found by
solving the boundary value problem and also close to the
values for the simulation in Fig. 1�B1� with additive noise.

III. SIMPLIFIED MODEL

To understand the dynamic instability of the persistent
state, we will introduce a simpler model for which we can
better explore the nature of how persistence is lost. We have
already noted that the biophysical model used in this paper is
type I so that the onset of periodic solutions is via a saddle
node on a circle. Near this bifurcation, the global dynamics
is well approximated by the “theta” model which itself de-
rives from a change of coordinates for the normal form of a
saddle-node bifurcation of fixed points. Since we want to
examine what happens with gap junctions, we will start with
the normal form and make the appropriate change of
variables.

If the gap junction coupling is weak, then the dynamics of
two neurons near the bifurcation is equivalent to

xj� = Ij + xj
2 + ggap�xk − xj� + �� j�t� . �5�

Here Ij are applied currents �including synaptic currents� and
� j�t� is white noise. The change of variables to convert this
model to the theta neuron is xj =tan�	 j /2�. Recalling that
when there is a change of variable with a white noise
process, we have to use Ito’s formula �21�, Eq. �5� becomes

	 j� = 1 − cos�	 j� + �1 + cos 	 j��Ij − �2/2 sin 	 j

+ ggap�tan�	k/2� − tan�	 j/2�� + �� j�t� . �6�

One problem should now be apparent. When 	k spikes, the
right-hand side of the equation is singular. The half-angle
formula for tangent is

tan�	/2� =
sin 	

1 + cos 	
.

The denominator vanishes only when the neuron spikes
�	=
� and is otherwise positive. Thus, we simply add a

small positive number to the denominator to obtain the non-
singular gap-junction model

q�	� =
sin�	�

1 + cos 	 + �
.

With these preliminaries, our full model is

	 j� = 1 − cos 	 j + �1 + cos 	 j��I + �� j�t� − �2/2 sin 	 j

+ gsyns̄ + ggap�q̄ − q�	 j�� ,

sj� = �0�1 − cos 	 j�p − sj/� ,

s̄ =
1

N
�

k

sk,

q̄ =
1

N
�

k

q�	k� .

We have chosen �0=0.1, p=5, �=0.1, I=−0.05. The amount
of noise, � varies between 0.05 and 0.35. The strength of the
synapses, is usually 0.6 and the strength of the gap junctions
is a parameter which we vary. The function �1−cos 	�p is
nearly zero when the neuron is at rest �	�0�, but becomes
large when the neuron fires �	=
�. The choice of p=5 is
arbitrary but chosen so that s�t� has dynamics similar to
those of the conductance-based model. The shape of
�1−cos 	�5 is similar to a Gaussian centered at 
 with a half
width of about 1.

Figure 3 shows that the simple model behaves in much
the same way as the conductance-based model. Compare
Fig. 1�B1� to Fig. 3�A�. That is, strong gap junctions cause
synchronization and then termination of persistent activity.
For smaller gap junction strengths, the constant persistent
state is unstable but there remains a persistent state which
appears to oscillate as seen in Fig. 3�B�. This figure shows
the �s̄ , q̄� plane for three values ggap.

IV. POPULATION DENSITY METHODS

To further analyze this model, we employ a population
density method. Such methods are well known in neural
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FIG. 3. �Color online� Behavior of the “theta” model for
N=200 cells as ggap increases. Noise level is �=0.05, and rest of
parameters are as in text. �A� For t�100 ggap=0.43. This destabi-
lizes the steady state leading to large oscillations and then return to
the resting state of no activity. �B� q̄ and s̄ for different strengths of
the gap junctions.
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modeling and are often used to analyze asynchronous states
in all-to-all connected networks �12,15,16,23–25�. Reference
�6� applied weak coupling and population density methods to
systems of quadratic integrate and fire models with noise to
show the emergence of synchrony due to the gap junctions.
However, here, we present an example of these methods ap-
plied to the interaction of strong synaptic and gap-junctional
coupling in an excitable system. We let P�	 , t�d	 denote the
probability that a cell will have a phase in �	 ,	+d	�. The
density �PDF�, P�	 , t� satisfies the partial differential
equation

�P�	,t�
�t

= −
�

�	
�J�	,t�P�	,t�� +

�2

2

�2�P�	,t��1 + cos 	�2�
�	2 .

�7�

The term J�	 , t� is obtained from the deterministic part of the
model

J�	,t� = 1 − cos 	 + �1 + cos 	��I + gsyns̄ + ggap�q̄ − q�	��

−
�2

2
sin 	� . �8�

The quantities, s̄ , q̄ are the averages of the synapses and the
gap function. s̄ satisfies an ODE

ds̄

dt
= − s̄/� + �

0

2


P�,t����d , �9�

where ��	�=�0�1−cos 	�p. The gap junction term is defined
by

q̄ = �
0

2


P�,t�q��d . �10�

P�	 , t� is 2
 periodic and also normalized:

�
0

2


P�	,t�d	 = 1.

This is a nonlinear integropartial differential equation for
which we have essentially no hope of solving analytically.
Thus to study this, we will discretize the PDE and then use
simulations to study it. We need to be a little bit careful—the
choice of discretization should preserve the total probability.
We divide �0,2
� into m bins, 	0=0, 	1=�	 , . . . ,	m−1= �m
−1��	 where �	=2
 /m. We let Pj�t�= P�	 j , t�,
Rj�t�=J�	 j , t�Pj�t�, and Wj =�2Pj�1+cos 	 j�2 /2. Then the
discretization is

Pj� =
Rj−1 − Rj+1

2�	
+

Wj+1 − 2Wj + Wj−1

�	2 .

The integrals in Eqs. �9� and �10� are approximated as
Riemann sums, e.g.,

q̄ � �
j=0

m−1

Pjq�	 j��	 .

Normalization is achieved by replacing Pm−1 by
�1−�k=0

m−2Pk�	� /�	. Thus, we eliminate the troublesome 0
eigenvalue associated with the normalization. This will en-
able us to use AUTO to perform a bifurcation analysis on the
discretized system of ODEs. We used m=50 but checked
some of the results with m=100.

Models similar to Eq. �7� have been studied by numerous
authors; the most comprehensive analysis was done in Ref.
�15�. References �16� and �16,17� used a numerical scheme
to study similar models by writing P�	 , t� as a truncated
Fourier series and solving the resulting set of ODEs for the
coefficients. �24� use very sophisticated numerical tech-
niques since they apply these methods to the leaky integrate-
and-fire model which has a reset and so, leads to complicated
nonlinear boundary conditions.

We find that the behavior of the PDF depends on the level
of noise. Figure 4�A� shows a bifurcation diagram for the
discretized version of Eq. �7� when the noise level is high,
�=0.35. As the gap junction strength increases the constant
persistent activity state exists but at ggap�1.4, it loses stabil-
ity at a Hopf bifurcation �labeled �a��. The result is a branch
of stable periodic solutions. This branch appears to terminate
at a homoclinic point �labeled �b� in Fig. 4�A�� when
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FIG. 4. Bifurcation diagram for the discretized version of Eq.
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noise �. �A� �=0.35. The persistent state loses stability at a Hopf
bifurcation �a�. This leads to oscillatory persistent activity �filled
circles� terminating on a homoclinic orbit �b�. There is a stable state
with very little activity for sufficiently strong gap junctions termi-
nating at a saddle-node bifurcation �c�. �B� �=0.05. As in �A� the
persistent state has a Hopf bifurcation �a�. The resulting branch of
periodic solutions �filled circles� loses stability at a period-doubling
point �b�. �C� Two parameter diagram showing curve of Hopf bi-
furcations of the persistent states �h� and the saddle-node curve for
the quiescent state �s�. Dashed lines correspond to noise values in
�A�, �B�. See text for further discussion.
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ggap�2.0. For sufficiently strong gap junctions, there is a
state of low activity �quiescent� where s̄ is essentially 0. As
the gap junctions decrease, this quiescent state terminates at
a saddle-node bifurcation �labeled �c��. The noise is suffi-
ciently high so that the quiescent state �s̄�0� does not exist
without gap junctions. That is, fluctuations due to noise are
sufficient to push the network into the asynchronous persis-
tent state. There is a regime of bistability between the peri-
odically varying state and the quiescent state �between the
points labeled b and c in Fig. 4�A��. For a finite size system,
it is possible to jump from the stable periodic system to the
quiescent system, thus even if ggap�2, it is possible to
spontaneously terminate persistent activity.

At low values of noise �e.g., 0.025�, the situation is quite
different �Fig. 4�B��. First, the quiescent state exists for all
values of ggap �not shown in the figure as it is indistinguish-
able from the s̄=0 axis�. As in the high noise case, the con-
stant persistent state loses stability at a Hopf bifurcation at
ggap�0.3. The branch of periodic solutions emanating from
the equilibrium state loses stability through a period dou-
bling bifurcation �Fig. 4�Bb�� at ggap�0.6. Figure 4�C� sum-
marizes the local equilibrium behavior in the noise ��� gap
junction �ggap� plane. There are two lines representing the
curve of Hopf bifurcation points for the persistent state
�labeled “h”� and the curve of saddle-node points for the
existence of the quiescent state �labeled “s”�. Note that these
curves describe the critical curves for two different fixed
points. Thus, their intersection does not correspond to a local
codimension two bifurcation. In the regions labeled �a�,�c�,
the persistent state exists and is stable. In the regions labeled
�b�,�d�, the quiescent state exists and is stable. In region �c�,
the persistent and quiescent states coexist.

Figure 5 provides a picture of the global dynamics of the
PDF in the periodic persistent regime. Here, oscillations oc-
cur in the P�	 , t� with a period of about 0.75. Figure 5�B�
shows the shapes of the PDF at different times. Similar be-
havior is found in the low noise case, but the variations in the
probabilities are much more extreme. In the high-noise case,
as the gap junctions strength increases, the periodic solutions

appear to merge with a steady state forming a homoclinic
loop �Fig. 4�A��. Figure 5�C� shows the numerical solution
near the homoclinic orbit. The stationary probability distri-
bution shown in Fig. 5�C1� has a single positive eigenvalue
with a one-dimensional unstable manifold which forms the
homoclinic orbit. The projection of this orbit is shown in Fig.
5�C2�. We have doubled the grid size and find that this PDF
still has only one positive eigenvalue.

In the low noise case, the periodic persistent state loses
stability at a period-doubling bifurcation. We zoom in on this
behavior in Fig. 6�A�. Since q̄ reliably passes through 0 on
every cycle, we plot s̄ at each time when q̄ increases through
0. For a very small range of ggap there is a period doubling
route to chaos. The period 4 and 8 bifurcations can be easily
picked out, but the higher period bifurcations are less dis-
cernible. Figure 6�B� shows the dynamics when ggap
=0.625. Each time s̄ increases through 0.2, we plot the value
of q̄. This plot shows the n+1 crossing against the n crossing
for several thousand points. The plot suggests that the dy-
namics is nearly captured by a one-dimensional unimodal
map. As ggap gets a bit beyond 0.625, the persistent state
ceases to stably exist and the only behavior is the quiescent
state.

V. THE CONDUCTANCE-BASED MODEL REVISITED

While the complex behavior in the low noise case would
likely be washed out in the conductance-based model with a
finite number of neurons, the higher noise behavior would
seem to be more robust. In particular, if the simple model is
a reasonable caricature of the full conductance-based system,
we should see evidence for the destabilization of the constant
persistent state and the termination of the oscillations via a
homoclinic bifurcation as in Figs. 4�A�, and 5�C1�, 5�C2�.
Indeed, Fig. 1�B� suggests exactly this. There are growing
oscillations whose period appears to increase with amplitude.
The “kink” in the phase-plane trajectory �Fig. 1�B2�� near
the point �0.05,−60� is also suggestive of a possible saddle-
point type dynamics which would be associated with a ho-
moclinic orbit. In order to investigate this possibility more
thoroughly, we solve the full stochastic model �1�, while
varying ggap and tracking the interval between crossings of
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s̄=0.226 which is close to the steady state for persistent ac-
tivity. Figure 7�A� shows a series of noisy limit cycles gen-
erated by the conductance-based model for several values of
ggap. The average potential of the network and the average
synaptic strength are plotted in the plane. For ggap�0.015,
the persistent state seems to exist and is stable. For ggap
slightly larger, this state loses stability and a small amplitude
oscillation emerges just as in the theta model �Fig. 4�A��.
The oscillation grows in amplitude as ggap increases. At
ggap=0.023, the limit cycle shows a clear “kink” suggesting
that it arises from a homoclinic bifurcation. Figure 7�B1�
shows intervals between crossing of s̄=0.226 as ggap in-
creases. For ggap�0.015, the crossing times are random but
for ggap�0.015 order emerges and a true time scale becomes
apparent. It appears that the crossing times are growing to
infinity. At a homoclinic bifurcation, we expect that the
periodgrows as

T � − K ln�p − p*� ,

where p is a parameter and p* is the point at which there is a
homoclinic bifurcation. Figure 7�B2� shows a plot of the
period as a function of −ln�0.0245−ggap�. We plot the best
least-squares fit of the line as well. Even though there are
only 100 neurons in the network and there is substantial
noise, these results strongly suggest the existence of a
homoclinic bifurcation in the full conductance-based system.

In both the high and low noise cases of the theta model,
there is a constant persistent state which seems to lose sta-
bility via a Hopf bifurcation. There is a suggestion of this
bifurcation in the conductance-based model as well. We now
consider an approximation which allows us to estimate the
value of the critical gap junction strength which leads to a
loss of stability of the constant persistent state. The simula-
tions and analysis demonstrate that the mechanism appears
to be due to the local synchronization of the oscillators, thus
we will use a weak-coupling approximation to analyze the

stability of the asynchronous state. The idea is as follows. We
write sj�t�= s̄+yj�t� where s̄ is the tonic component of the
persistent activity. For example in Fig. 1, s̄�0.23. We as-
sume that the gap junctions are weak. Thus, we can write Eq.
�1� as

C
dVj

dt
= − Iion − gsyns̄Vj − �

k

��gsyn/N�ykVj

+ �ggap/N��Vj − Vk�� + �� j�t� .

The variables yj satisfy the differential equation

dyj

dt
= 2�1 − s̄ − yj�/�1 + exp�− Vj/4�� − �s̄ + yj�/3.

Coupling between neurons is only via the terms in the sum-
mation. In absence of these terms, each cell will fire periodi-
cally due to the tonic drive from s̄. We regard this as a
�noisy� system of weakly coupled oscillators. With small
noise, this conductance-based system can be reduced to a
system of coupled phase models �26�:

d j

dt
= 1 +

1

N
�

k

�gsynHsyn�k −  j� + ggapHgap�k −  j��

+ �� j�t� . �11�

The periodic functions Hsyn ,Hgap are obtained from
averaging:

Hsyn�� = −
1

P
�

0

P

V*�t�V�t�y�t + �dt ,

Hgap�� =
1

P
�

0

P

V*�t��V�t + � − V�t��dt ,

where V�t� ,y�t� are the P-periodic solutions to the uncoupled
oscillator and V*�t� is the periodic solution to the linear ad-
joint equation �see Ref. �27��. These functions are easily
computed numerically using the package XPPAUT �28�. The
analysis of Eq. �11� follows the work of Ref. �29�, wherein
the stability of the asynchronous state �phase distribution is
uniform� is analyzed. Without going into details, it is easy to
show that the asynchronous state is stable only if

�m = − �2m2/2 + m�gsynam + ggapbm� � 0

for all m. �Reference �6� obtain a similar result.� The param-
eters, am ,bm are the sine coefficients of the Fourier expan-
sion of the functions Hsyn�� and Hgap��, respectively. With
noise, for m large, �m�0 so that practically speaking, only
the lower order harmonics matter. We compute these coeffi-
cients for the conductance-based model and find that the co-
efficients for m=1 are almost an order of magnitude larger
than those for m�1 and that a1=−0.106 and b1=1.18. Since
gsyn=0.15, we see that the minimum gap junction strength to
destabilize the constant persistent state is roughly
ggap

* �0.0135 �when noise is zero�. Examination of Fig.
7�B1� indicates that the onset of instability in the presence of
small noise is at ggap�0.015 which is close to our estimate.
Similar estimates can be applied to the theta model to deter-
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FIG. 7. �Color online� Simulation of the conductance-based
model as ggap varies. �A� Phase-plane showing noisy limit cycles as
ggap increases. �B1� Interval between crossings of s̄=0.226 as ggap

changes. Between 0.014 and 0.015, the persistent state appears to
lose stability and gives rise to a robust periodic variation of s̄
around its steady state. The period becomes large and the limit cycle
disappears at about ggap=0.0245. �B2� Plot of period versus
−ln�0.0245−ggap� is close to linear.
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mine the coupling strength for the synchronizing instability.
We remark that the critical gap function strength is a mono-
tonically increasing function of the noise and furthermore a
close examination of Fig. 4�C� reveals that for low noise, the
critical gap strength depends quadratically on � as predicted
from the formula for �m.

VI. DISCUSSION

Gap junctions are rarely seen in recurrent excitatory net-
works yet they are ubiquitous in inhibitory networks. We
suggest that the main role for gap junctions is to encourage
synchronization during rhythmic behavior. Synchrony, be-
cause it leads to a “shared” refractory period between neu-
rons can lead to the extinction of persistent activity. While
there are situations in which gap junctions do not produce
synchrony �5,6�, in most biophysical models for cortical neu-
rons, they encourage synchrony.

It is easy to imagine situations in which gap junctions
could alone produce a persistent state if the coupling is
sparse. Indeed, spiral waves and irregular activity are known
to occur in two-dimensional media with local coupling. Ref-
erence �30� described a spatially distributed sparsely coupled
network of excitable cells and found spontaneous oscillatory
activity. However, crucial to the generation of this activity
was the existence of cells that could spontaneously spike.
For example, a large amount of noise could cause a neuron to
spontaneously fire. The coupling between cells would cause
the spiking to propagate and result in a population spike. The
refractory period of the cells would prevent another spike
from occurring until some time has elapsed. With enough
cells and with enough connectivity, then the spiking would
be regular. This is not like the persistent activity seen in
synaptically coupled networks where the coupling encour-
ages asynchrony. The Lewis-Rinzel model produces nearly
synchronous oscillations for exactly the reason that gap junc-
tions destroy asynchrony; in both cases the role of gap junc-
tions is to cause neurons to fire in concert.

Dynamic destabilization of persistent states has been con-
sidered by numerous authors. The methods of Refs. �16,17�
are the closest to those used here. They looked at networks of
excitatory and inhibitory cells using a model similar to, but
not the same as the theta model. References �12,15� analyzed
the quadratic integrate-and-fire model with finite spike and
reset. They showed that the persistent state could undergo a
synchronizing instability as the degree of inhibitory coupling
changed. Depending on the time constant of recurrent exci-
tation and inhibition, the persistent state could begin to os-
cillate much as in our case or, for fast time constants, disap-
pear. Our contribution has shown that similar behavior
occurs with gap junctional coupling. The present results re-
quire that the synaptic coupling be sufficiently strong to pro-
duce a persistent state since weak synaptic coupling will not
be enough to overcome the attraction of the stable rest state.
We have not yet explored whether sparse coupling will en-
hance or hurt the existence of the persistent state. Clearly,
one effect of sparseness in the synaptic coupling is to intro-
duce heterogeneity which will in turn make the asynchro-
nous state more likely. We have used the biophysical and

simplified models to suggest that a possible reason for the
lack of gap junctions in recurrent excitatory networks is that
they disrupt persistent states which may be necessary for
working memory.

In the case of synaptic coupling, it is possible to develop
simplified mean field models which can explain some
aspects of the instability of the persistent state. Reference
�22� showed this in a population of conductance-based neu-
rons when the synapses are slow and Ref. �15� found a simi-
lar phenomena also when the synapses were slow. For ex-
ample, in a purely excitatory network, the total synaptic
activity �without gap junctions� is well approximated even
dynamically by the equation

�syn
ds̄

dt
= − s̄ + �0F�s̄��1 − s̄� ,

where F�s� is the firing rate of an individual neuron as a
function of the synaptic gating variable. This is just a dy-
namic version of Eq. �4�. One open question is whether there
is a simplified mean field theory for networks which involve
gap junctional coupling.
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APPENDIX A: MODEL KINETICS

Parameters for the conductances, etc are gL=0.0092,
EL=−61.52, gNa=35, ENa=45, gK=25, EK=−95, Esyn=0,
gsyn=0.15, C=0.29. The channel kinetics are

am�v� = 0.091�v + 38�/�1 − exp�− �v + 38�/5� ,

bm�v� = − 0.062�v + 38�/�1 − exp��v + 38�/5� ,

ah�v� = 0.016 exp��− 55 − v�/15� ,

bh�v� = 2.07/�1 + exp��17 − v�/21� ,

an�v� = 0.01�− 45 − v�/�exp��− 45 − v�/5� − 1 ,

bn�v� = 0.17 exp��− 50 − v�/40� ,

��v� = 1/�1 + exp�− v/4�� .

The synapse satisfies

s� = ��V��1 − s� − s/3.

APPENDIX B: BOUNDARY VALUE PROBLEM

We rescale time, t= Pt� with P, the unknown period, so
that the single cell model can be written as

V� = PF�V,m,n,h, s̄,V̄� ,

m� = P�am�V��1 − m� − bm�V�m� ,

GAP JUNCTIONS DESTROY PERSISTENT STATES IN… PHYSICAL REVIEW E 74, 031918 �2006�

031918-7



h� = P�ah�V��1 − h� − bh�V�h� ,

n� = P�an�V��1 − n� − bn�V�n� ,

s� = P���V��1 − s� − s/�� ,

y� = s ,

z� = V .

We must solve this set of equations subject to

V�0� = 0, V�1� = 0, m�0� = m�1�, h�0� = h�1�, n�0�

= n�1�, s�0� = s�1�, y�0� = 0, y�1� = s̄, z�0� = 0, z�1�

= V̄ .

We have seven differential equations with ten boundary con-
ditions. But the period of the limit cycle P, the mean value of
the synapse s̄, and the mean voltage V̄ are free parameters.
So this gives us the appropriate number of unknowns. We
solve the BVP initially by using the full simulations to get a
good guess for P , s̄ , V̄. We use shooting to obtain one good
solution to the BVP. Then we use AUTO to continue the
solution as parameters change.
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